Abstract

In the spring and summer of 2019, experiments were conducted at the High Temperature Test Facility (HTTF) that form the basis of an upcoming high-temperature gas-cooled reactor (HTGR) thermal hydraulics (T/H) benchmark. HTTF is an integral effects test facility for HTGR T/H modeling validation. This paper presents RELAP5-3D models of two of those experiments: PG-27, a pressurized conduction cooldown (PCC); and PG-29, a depressurized conduction cooldown (DCC). These models used the RELAP5-3D model of HTTF originally developed by Paul Bayless as a starting point. The sensitivity analysis and uncertainty quantification code, RAVEN was used to perform calibration studies for the steady-state portion of PG-27. We developed four PG-27 calibrations based on steady-state conditions. These calibrations all used an effective thermal conductivity equal to 36 % of the measured thermal conductivity, but they differed with respect to the frictional pressure drops and radial conduction models. These models all captured the trends in steady-state temperature distributions and transient temperature behavior well. All four calibrations show room for improvement in predicting the transient temperature rise. The smallest error in temperature rise during the transient was a 21 % underprediction, and the largest was a 48 % underprediction. The errors in transient temperature rise are largely a result of a mismatch in power density between the RELAP5-3D model and the experiment due to the location of active heater rods along the boundary between heat structures in the model. The best of these calibrations was applied to PG-29 to model the DCC. Once again, temperatures during the transient were underpredicted but trends in temperature were captured. The RELAP5-3D model captured trends in the data but could not reproduce measured temperatures exactly. This result is not attributed to deficiencies in the experimental data or to RELAP5–3D itself. Rather, this result likely arises due to the some of the assumptions and decisions made when the RELAP5-3D model was first developed, prior to the execution of HTTF experiments. An agreement in prediction of temperature trends but challenges reproducing HTTF temperatures within measurement uncertainty is consistent with previous analyses of HTTF in the literature. Future RELAP5-3D validation activities centered around HTTF may be able to provide greater insight into the code’s capabilities for HTGR modeling with a more finely nodalized model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.