Abstract
Following Visser’s approach (Visser in Phys. Rev. D 39:3182, 1989; Nucl. Phys. B 328:203, 1989; Lorentzian wormholes. AIP Press, New York, 1996) of cut and paste, we construct Reissner–Nordstrom thin-shell wormholes by taking the generalized cosmic Chaplygin gas for the exotic matter located at the wormhole throat. The Darmois–Israel conditions are used to determine the dynamical quantities of the system. The viability of the thin-shell wormholes is explored with respect to radial perturbations preserving the spherical symmetry. We find stable as well as unstable Reissner–Nordstrom thin-shell wormhole solutions depending upon the model parameters. Finally, we compare our results with both generalized and modified Chaplygin gases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have