Abstract
This paper investigates charged black holes within the framework of quintic quasi-topological gravity, focusing on their thermodynamics, conserved quantities, and stability. We construct numerical solutions and explore their thermodynamic properties, supplemented by the study of analytically solvable special cases. By verifying the first law of thermodynamics, we validate our approach and compare our findings to those of Einstein gravity. The physical properties of the solutions are examined across anti-de Sitter, de Sitter, and flat spacetime backgrounds. Our analysis reveals that anti-de Sitter solutions demonstrate thermal stability, while de Sitter and flat solutions lack this property. Finally, we discuss the implications of our results and propose potential avenues for future research in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.