Abstract
In the present work, we reinvestigate the atomic ordering of a Pb-free morphotropic phase boundary (MPB) compositionviz.,K0.5Na0.5NbO3(KNN50) and its vicinity at various length scales using high-resolution x-ray diffraction and pair distribution function data. We have observed a monoclinic phase (Space Group: Pm) at long/short ranges differing from a very recent report by Sahaet al2024J. Phys.: Condens. Matter36425703. Moreover, the ferroelectric (polarization) dominance of short-range ordering (SRO) over long-range ordering (LRO) has been observed and quantified for the very first time using the amplitude of the ferroelectric frozen phonon mode (Γ4-) (corresponding to the high symmetry cubic phase), thereby structure is linked with ferroelectric (or polarization) property for a widely studied MPB systemviz.,KxNa(1-x)NbO3(KNNxforx= 0.40, 0.50, and 0.60). Two uniquely identified monoclinic phases has been observed for SRO (MSRO) and LRO (MLRO) for all the compositions. The amplitude of ferroelectric frozen phonon mode (Γ4-) corresponding toMSROis significantly higher (≈150%-180%) thanMLRO. A peak is observed in the amplitude ofΓ4-and intensity of prominent Raman peaks (ν1andν5) forx= 0.50, which is held responsible for high physical propertiesviz.,dielectric permittivity, piezoelectric coefficient, remnant polarization, electromechanical coupling coefficient, and many more widely reported in literature for KNN50.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have