Abstract

The intricacies of the human genome, manifested as a complex network of genes, transcend conventional representations in text or numerical matrices. The intricate gene-to-gene relationships inherent in this complexity find a more suitable depiction in graph structures. In the pursuit of predicting gene expression, an endeavor shared by predecessors like the L1000 and Enformer methods, we introduce a novel spatial graph-neural network (GNN) approach. This innovative strategy incorporates graph features, encompassing both regulatory and structural elements. The regulatory elements include pair-wise gene correlation, biological pathways, protein-protein interaction networks, and transcription factor regulation. The spatial structural elements include chromosomal distance, histone modification and Hi-C inferred 3D genomic features. Principal Node Aggregation models, validated independently, emerge as frontrunners, demonstrating superior performance compared to traditional regression and other deep learning models. By embracing the spatial GNN paradigm, our method significantly advances the description of the intricate network of gene interactions, surpassing the performance, predictable scope, and initial requirements set by previous methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.