Abstract
Protein function annotation is fundamental to understanding biological mechanisms. The abundant genome-scale protein-protein interaction (PPI) networks, together with other protein biological attributes, provide rich information for annotating protein functions. As PPI networks and biological attributes describe protein functions from different perspectives, it is highly challenging to cross-fuse them for protein function prediction. Recently, several methods combine the PPI networks and protein attributes via the graph neural networks (GNNs). However, GNNs may inherit or even magnify the bias caused by noisy edges in PPI networks. Besides, GNNs with stacking of many layers may cause the over-smoothing problem of node representations. We develop a novel protein function prediction method, CFAGO, to integrate single-species PPI networks and protein biological attributes via a multi-head attention mechanism. CFAGO is first pre-trained with an encoder-decoder architecture to capture the universal protein representation of the two sources. It is then fine-tuned to learn more effective protein representations for protein function prediction. Benchmark experiments on human and mouse datasets show CFAGO outperforms state-of-the-art single-species network-based methods at least 7.59%, 6.90%, 11.68% in terms of m-AUPR, M-AUPR and Fmax, respectively, demonstrating cross-fusion by multi-head attention mechanism can greatly improve the protein function prediction. We further evaluate the quality of captured protein representations in terms of Davies Bouldin Score, whose results show cross-fused protein representations by multi-head attention mechanism is at least 2.7% better than that of original and concatenated representations. We believe CFAGO is an effective tool for protein function prediction. The source code of CFAGO and experiments data are available at: http://bliulab.net/CFAGO/. Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.