Abstract

Metal/intermetallic laminate composites can improve the mechanical properties of intermetallic materials using metal layers. In recent years, titanium aluminide intermetallics have received increasing attention due to their excellent performance properties, such as high melting point, high specific strength and stiffness, and good corrosion resistance. However, the low fracture toughness of Al3Ti alloys at room temperature has greatly limited their application, and fiber or particle reinforcement has not shown a significant toughening effect. Research into the reinforcing effects of the interface and near-interface zone on the fracture behavior of Al3Ti is lacking. Ti/Al3Ti metal/intermetallic laminate composite was synthesized from titanium and aluminum foils using vacuum hot-pressed sintering technology. The microstructure of the prepared material was analyzed by scanning electron microscope and electron backscattered diffraction. Results illustrate that both Ti and Al3Ti were single-phase and there was a noticeable stress concentration on the interface. To obtain indentation and cracks, loads were applied to different locations of the composite by a microhardness tester. The growth path of the cracks was then observed under microscope, showing that crack propagation was prevented by the interface between the Ti and Al3Ti layers, and the cracks that propagated parallel to the laminate shifted to the interface. Fracture toughness of the different areas, including Al3Ti layers, interface, and near-interface zone, were measured by the indentation fracture method. The fracture toughness at and near the interface was 1.7 and 2 times that of the Al3Ti layers, respectively. Results indicate that crack blunting and crack front convolution by the laminate structure was primarily responsible for increased toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call