Abstract

In this paper, we propose a novel Q-learning method based on multirate generalized policy iteration (MGPI) for unknown discrete-time (DT) linear quadratic regulation (LQR) problems. Q-learning is an effective scheme for unknown dynamical systems because it does not require any knowledge of the system dynamics to solve optimal control problems. By applying the MGPI concept, which is an extension of basic GPI with multirate time horizon steps, a new Q-learning algorithm is proposed for solving the LQR problem. Further, it is proven that the proposed algorithm converges to an optimal solution i.e., it learns the optimal control policy iteratively using the states and the control-input information. Finally, we employ the two degree-of-freedom helicopter model to verify the effectiveness of the proposed method and investigate its convergence properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.