Abstract

In this paper, an optimal tracking control approach based on adaptive dynamic programming (ADP) algorithm is proposed to solve the linear quadratic regulation (LQR) problems for unknown discrete-time systems in an online fashion. First, we convert the optimal tracking problem into designing infinite-horizon optimal regulator for the tracking error dynamics based on the system transformation. Then we expand the error state equation by the history data of control and state. The iterative ADP algorithm of policy iteration (PI) and value iteration (VI) are introduced to solve the value function of the controlled system. It is shown that the proposed ADP algorithm solves the LQR without requiring any knowledge of the system dynamics. The simulation results show the convergence and effectiveness of the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.