Abstract
We propose a reinforcement learning strategy to control wind turbine energy generation by actively changing the rotor speed, the rotor yaw angle and the blade pitch angle. A double deep Q-learning with a prioritized experience replay agent is coupled with a blade element momentum model and is trained to allow control for changing winds. The agent is trained to decide the best control (speed, yaw, pitch) for simple steady winds and is subsequently challenged with real dynamic turbulent winds, showing good performance. The double deep Q-learning is compared with a classic value iteration reinforcement learning control and both strategies outperform a classic PID control in all environments Furthermore, the reinforcement learning approach is well suited to changing environments including turbulent/gusty winds, showing great adaptability. Finally, we compare all control strategies with real winds and compute the annual energy production. In this case, the double deep Q-learning algorithm also outperforms classic methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.