Abstract
Cloud gaming has been very popular in recent years, but issues relating to maintaining low interaction delay to guarantee satisfactory user experience are still prevalent. We observe that the server-side processing delay in cloud gaming system could be heavily influenced by how the resources are partitioned among processes. However, finding the optimal partitioning policy that minimizes the response delay faces several critical challenges. In this paper, we propose an online resource partitioning framework for reducing response delay in cloud gaming, which has several promising properties. First, we divide the processes into disjoint groups and partition resources among process groups, which greatly simplifies the resource partitioning problem while ensuring high partitioning effectiveness. Second, to tackle dynamic workload changes, we classify game workloads into several clusters and maintain separate process grouping plan for each cluster. Third, we leverage reinforcement learning to adaptively choose the best actions for minimizing response delay in real time. We evaluate the proposed framework in a real cloud gaming environment using several real games. The experimental results show that our approach can reduce the response delay by 22\% to 41\% compared to a system without resource partitioning, and outperforms other resource partitioning policies significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.