Abstract

The parallel processing of the service function chain (SFC) is expected to provide better low-delay service delivery, because it breaks through the bottleneck of traditional serial processing mode in which service delay increases linearly with the SFC length. However, the provision of parallelized SFC (PSFC) is much more difficult due to the unique construction of PSFCs, inevitable parallelization overhead, and delay balancing requirement of PSFC branches; therefore, existing mechanisms for serial SFC cannot be directly applied to PSFC. After a comprehensive review of recent related work, we find that traffic scheduling mechanisms for PSFCs is still lacking. In this paper, a delay-aware traffic scheduling mechanism (DASM) for PSFCs is proposed. DASM first transforms PSFC into several serial SFCs by releasing the upstream VNF constraints so as to handle them independently while keeping their parallel relations. Secondly, DASM realizes delay-aware PSFC traffic scheduling based on the reinforcement learning (RL) method. To the best knowledge of the authors, this is the first attempt to address the PSFC traffic scheduling problem by transforming them into independent serial SFCs. Simulation results show that the proposed DASM outperforms the advanced PSFCs scheduling strategies in terms of delay balance and throughput.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call