Abstract

In this paper, an online adaptive optimal control problem of a class of continuous-time Markov jump linear systems (MJLSs) is investigated by using a parallel reinforcement learning (RL) algorithm with completely unknown dynamics. Before collecting and learning the subsystems information of states and inputs, the exploration noise is firstly added to describe the actual control input. Then, a novel parallel RL algorithm is used to parallelly compute the corresponding N coupled algebraic Riccati equations by online learning. By this algorithm, we will not need to know the dynamic information of the MJLSs. The convergence of the proposed algorithm is also proved. Finally, the effectiveness and applicability of this novel algorithm is illustrated by two simulation examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.