Abstract
In this paper, a model-free off-policy reinforcement learning (RL) algorithm is proposed to address the optimal tracking control (OTC) problem for discrete-time Markov jump linear systems (MJLSs). The tracking reference signal is firstly augmented into discrete-time MJLSs, whereby the original tracking control problem is converted to the optimal control problem of the augmented system. The corresponding augmented coupled game algebraic Riccati equation (ACGARE) is then derived. On this basis, an online RL algorithm is developed to solve the OTC problem by using the policy iteration (PI) technique. Then, a novel model-free method is proposed, which eliminates the requirement of the system dynamics and transition probability. Finally, a simulation example is provided to prove the convergence and validate the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.