Abstract

We report the development of a silicon microelectrode array for brain machine interfaces and neural prosthesis fabricated in a commercial microelectromechanical systems (MEMS) process. We demonstrate high-aspect ratio silicon microelectrodes that reach 6.5 mm in length while having only 10 µm thickness. The fabrication of such elongated neural microelectrodes could lead to the development of cognitive neural prosthetics. Cognitive neural signals are higher level signals that contain information related to the goal of movements such as reaching and grasping and can be recorded from deeper regions of the brain such as the parietal reach region (PRR). We propose a new concept of reinforcing the regions of the electrodes that are more susceptible to breakage to withstand the insertion axial forces, retraction forces, and tension forces of the brain tissue during surgical implantation. We describe the design techniques, detailed analytical models, and simulations to develop reinforced silicon-based elongated neural electrodes. The electrodes are fabricated using the commercial MicraGem process from Micralyne, Inc. The use of a commercial MEMS fabrication process for silicon neural microelectrodes development yields low-cost, mass-producible, and well-defined electrode structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.