Abstract

Reichenbach's principles of a probabilistic common cause of probabilistic correlations is formulated in terms of relativistic quantum field theory, and the problem is raised whether correlations in relativistic quantum field theory between events represented by projections in local observable algebrasA(V1) andA(V2) pertaining to spacelike separated spacetime regions V1 and V2 can be explained by finding a probabilistic common cause of the correlation in Reichenbach's sense. While this problem remains open, it is shown that if all superluminal correlations predicted by the vacuum state between events inA(V1) andA(V2) have a genuinely probabilistic common cause, then the local algebrasA(V1) andA(V2) must be statistically independent in the sense of C*-independence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.