Abstract

We show that the rehydroxylation (RHX) method can be used to date archaeological pottery, and give the first RHX dates for three disparate items of excavated material. These are in agreement with independently assigned dates. We define precisely the mass components of the ceramic material before, during and after dehydroxylation. These include the masses of three types of water present in the sample: capillary water, weakly chemisorbed molecular water and chemically combined RHX water. We describe the main steps of the RHX dating process: sample preparation, drying, conditioning, reheating and measurement of RHX mass gain. We propose a statistical criterion for isolating the RHX component of the measured mass gain data after reheating and demonstrate how to calculate the RHX age. An effective lifetime temperature (ELT) is defined, and we show how this is related to the temperature history of a sample. The ELT is used to adjust the RHX rate constant obtained at the measurement temperature to the effective lifetime value used in the RHX age calculation. Our results suggest that RHX has the potential to be a reliable and technically straightforward method of dating archaeological pottery, thus filling a long-standing gap in dating methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call