Abstract

This study investigates how the phase separation induced by the biopolymers gelatin and gum arabic influences the microstructure of alginate beads prepared in CaCl2 solutions and the subsequent rehydration of the air-dried beads. The extent of associative phase separation in mixture gel beads can be controlled via pH. Compared with control beads, alginate/gelatin mixture beads swelled faster at the initial stage of rehydration while slowed down at the late stage, reaching a lower equilibrium swelling ratio. The faster initial swelling kinetics can be attributed to the presence of gelatin which prevents the side-by-side aggregation of egg-box junctions. This conclusion was confirmed using wide angle X-ray diffraction (WAXD) measurements. The lower equilibrium swelling ratio was due to the gelatin network restricting alginate from further swelling. This was evidenced by temperature dependence swelling experiments and comparison with alginate/gum arabic beads where no additional network was formed on top of the alginate network. The varying of pH, correspondingly the change of phase separation extent, had a significant influence on the rehydration of mixture gel beads. The best rehydratability was observed at higher pHs where no phase separation occurred and the components were homogenously mixed. With decreasing pH, the associative phase separation between alginate and gelatin was promoted, and led to local over-concentration of alginate, which gave rise to poor rehydratability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.