Abstract

Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model gives significantly lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

Highlights

  • Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual

  • According to the standard lore of inflationary cosmology, reheating of the Universe is caused by out-of-equilibrium decay of the inflaton field that oscillates about its potential minimum

  • Following the idea of holographic thermalisation [6,7] which asserts that blackhole formation in a (d + 1)-dimensional anti-de Sitter (AdS) spacetime is a dual description of out-of-equilibrium thermalisation in d-dimensional conformal field theory (CFT), we postulate that the Universe sits at the boundary of a fivedimensional asymptotically AdS spacetime

Read more

Summary

Introduction

Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.