Abstract

Microplastics are increasingly reported, not only in the environment but also in a wide range of food commodities. While studies on microplastics in food abound, the current state of science is limited in its application to regulatory risk assessment by a continued lack of standardized definitions, reference materials, sample collection and preparation procedures, fit-for purpose analytical methods for real-world and environmentally relevant plastic mixtures, and appropriate quality controls. This is particularly the case for nanoplastics. These methodological challenges hinder robust, quantitative exposure assessments of microplastic and nanoplastic mixtures from food consumption. Furthermore, limited toxicological studies on whether microplastics and nanoplastics adversely impact human health are also impeded by methodology challenges. Food safety regulatory agencies must consider both the exposure and the risk of contaminants of emerging concern to ascertain potential harm. Foundational to this effort is access to and application of analytical methods with the capability to quantify and characterize micro- and nanoscale sized polymers in complex food matrices. However, the early stages of method development and application of early stage methods to study the distribution and potential health effects of microplastics and nanoplastics in food have largely been done without consideration of the stringent requirements of methods to inform regulatory activities. We provide regulatory science perspectives on the state of knowledge regarding the occurrence of microplastics and nanoplastics in food and present our general approach for developing, validating, and implementing analytical methods for regulatory purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call