Abstract

Microplastic pollution has become a worldwide concern in aquatic and terrestrial environments. Microplastics could also enter the food chain, causing potential harm to human health. To facilitate the risk assessment of microplastics to humans, it is critically important to have a reliable analytical technique to detect, quantify, and identify microplastics of various materials, sizes, and shapes from environmental, agricultural, and food matrices. Spectroscopic techniques, mainly vibrational spectroscopy (Raman and infrared), are commonly used techniques for microplastic analysis. This review focuses on recent advances of these spectroscopic techniques for the analysis of microplastics in food. The fundamental, recent technical advances of the spectroscopic techniques and their advantages and limitations were summarized. The food sample pretreatment methods and recent applications for detecting and quantifying microplastics in different types of food were reviewed. In addition, the current technical challenges and future research directions were discussed. It is anticipated that the advances in instrument development and methodology innovation will enable spectroscopic techniques to solve critical analytical challenges in microplastic analysis in food, which will facilitate the reliable risk assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call