Abstract

Parkinson's disease (PD) is a multifactorial degenerative disease in the elder. Given the involvement of mammalian sterile 20-like kinase 1 (MST1) in PD, this article was to illustrate the mechanism of MST1 in 1-methyl-4-phenylpyridinium ion (MPP+)-induced PD cell model. Cells were treated with different concentrations of MPP+ to establish a PD cell model. Reverse transcription-quantitative polymerase chain reaction and Western blot revealed that MST1 expression and iron ion concentration increased, but cellular viabilitydecreased with MPP+ concentration. Inhibition of MST1 decreased ferroptosis; increased cellular viability, iron ion content, and levels of glutathione peroxidase 4; and decreased reactive oxygen species and lactate dehydrogenase release. Upregulation of ferroptosis levels using ferroptosis agonist Erastin reduced the protective effect of MST1 inhibition on PD cells. Mechanistically, dual-luciferase analysis identified that miR-23b-3ptargeted MST1 and inhibited its expression. Overexpression of miR-23b-3pinhibited MST1 levels, thereby reducing cellular ferroptosis and attenuating MPP+-induced cell injury. Collectively, MST1 expression increased with increasing MPP+ concentration, and miR-23b-3ptargeted MST1 to reduce ferroptosis and MPP+-induced cell injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.