Abstract

In osteoarthritis (OA), chondrocyte metabolism dysregulation increases relative catabolic activity, which leads to cartilage degradation. To enable the semiquantitative interpretation of the intricate mechanisms of OA progression, we propose a network-based model at the chondrocyte level that incorporates the complex ways in which inflammatory factors affect structural protein and protease expression and nociceptive signals. Understanding such interactions will leverage the identification of new potential therapeutic targets that could improve current pharmacological treatments. Our computational model arises from a combination of knowledge-based and data-driven approaches that includes in-depth analyses of evidence reported in the specialized literature and targeted network enrichment. We achieved a mechanistic network of molecular interactions that represent both biosynthetic, inflammatory and degradative chondrocyte activity. The network is calibrated against experimental data through a genetic algorithm, and 81% of the responses tested have a normalized root squared error lower than 0.15. The model captures chondrocyte-reported behaviors with 95% accuracy, and it correctly predicts the main outcomes of OA treatment based on blood-derived biologics. The proposed methodology allows us to model an optimal regulatory network that controls chondrocyte metabolism based on measurable soluble molecules. Further research should target the incorporation of mechanical signals.

Highlights

  • In osteoarthritis (OA), chondrocyte metabolism dysregulation increases relative catabolic activity, which leads to cartilage degradation

  • An initial prior knowledge network model was built by manual biocuration in the form of a literature-based protein interactome specific to articular cartilage and chondrocytes and, to some extent, to OA

  • The enriched network was calibrated against experimental data through a genetic algorithm, leading to a new optimized network

Read more

Summary

Introduction

In osteoarthritis (OA), chondrocyte metabolism dysregulation increases relative catabolic activity, which leads to cartilage degradation. To enable the semiquantitative interpretation of the intricate mechanisms of OA progression, we propose a network-based model at the chondrocyte level that incorporates the complex ways in which inflammatory factors affect structural protein and protease expression and nociceptive signals. Understanding such interactions will leverage the identification of new potential therapeutic targets that could improve current pharmacological treatments. Several guidelines for OA treatment have been developed, mainly targeting pain reduction and functional restoration They include conservative interventions, mostly based on painkillers, but total knee arthroplasty might eventually be ­required[3,4]. No interventions to repair degraded cartilage or decelerate the progression of OA are currently a­ vailable[6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.