Abstract
Prolactin (PRL) has both pro- and anti-gonadal roles in the regulation of avian ovarian functions through its interaction with the receptor (PRLR). However, neither the pattern of expression of PRLR nor its regulatory mechanisms during follicle development have been clearly defined. The objective of the present study was to investigate mechanisms of PRLR expression in chicken granulosa cells. Levels of PRLR transcript were highest in the stroma and walls of follicles < 2 mm in diameter and progressively declined with the maturation of follicles. In preovulatory follicles, PRLR was expressed at higher levels in granulosa than theca layers. FSH exerted the greatest stimulatory effect on PRLR and StAR expression in cultured granulosa cells of the 6–8 mm follicles but this effect declined as follicles matured to F1. In contrast, LH did not alter the expression of PRLR in granulosa cells of all follicular classes but increased levels of StAR in F2 and F1 granulosa cells. Both non-glycosylated- (NG-) and glycosylated- (G-) PRL upregulated basal PRLR expression in granulosa cells of the 6–8 mm, F3 or F1 follicles but had little effect in F2 follicles. Furthermore, FSH-stimulated PRLR expression was reduced by the addition of either isoform of PRL especially in F2 granulosa cells. These results indicate that PRLR is differentially distributed and regulated by FSH or PRL variants independently or in combination in the follicular hierarchy. By using activators and inhibitors, we further demonstrated that multiple signaling pathways, including PKA, PKC, PI3K, mTOR and AMPK, are not only directly involved in, but they can also converge to modulate ERK2 activity to regulate FSH-mediated PRLR and StAR expression in undifferentiated granulosa cells. These data provide new insights into the regulatory mechanisms controlling the expression of PRLR in granulosa cells.
Highlights
In chickens, ovarian follicles go through initial and cyclic recruitment before ovulation
Since PRL or its receptor (PRLR) was minimally expressed in theca layers compared to granulosa layers in the hierarchical follicles (Fig 1B), we further investigated its regulation by gonadotropins in granulosa cells from the 6–8 mm follicles and F3-F1 follicles
We evaluated the abundance of steroidogenic acute regulatory protein (StAR) transcript, which is regulated by gonadotropins, as a validation of our cell culture model
Summary
Ovarian follicles go through initial (activation of cortical follicles) and cyclic (follicle selection) recruitment before ovulation. These events are tightly coupled with the morphological and functional changes in granulosa cells [1]. In follicles prior to selection, granulosa cells are undifferentiated and steroidogenically inactive [2] due to low levels of expression of PLOS ONE | DOI:10.1371/journal.pone.0170409. In follicles prior to selection, granulosa cells are undifferentiated and steroidogenically inactive [2] due to low levels of expression of PLOS ONE | DOI:10.1371/journal.pone.0170409 January 20, 2017
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.