Abstract

Homocitrate synthase (HCS) catalyzes one of the regulated steps of the alpha-aminoadipate pathway for lysine biosynthesis in fungi. The kinetic mechanism of regulation of HCS from Saccharomyces cerevisiae by Na+ and the feedback inhibitor lysine was studied by measuring the initial rate in the absence and presence of the effectors. The data suggest that Na+ is an activator at low concentrations and an inhibitor at high concentrations and that these effects occur as a result of the monovalent ion binding to two different sites in the free enzyme. Inhibition and activation by Na+ can occur simultaneously, with the net rate of the enzyme determined by Na+/K(iNa+) and Na+/K(act), where K(iNa+) and K(act) are the inhibition and activation constants, respectively. The inhibition by Na+ was eliminated at high concentrations of acetyl-CoA, the second substrate bound, but the activation remained. Fluorescence binding studies indicated that lysine bound with high affinity to its binding site as an inhibitor. The inhibition by lysine was competitive versus alpha-ketoglutarate and linear in the physiological range of lysine concentrations up to 5 mm. The effects of Na+ and lysine were independent of one another. A model is developed for regulation of HCS that takes into account all of the effects discussed above.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.