Abstract

Due to a critical organ shortage, pig organs are being explored for use in transplantation. Differences between species, particularly in cell surface glycans, can trigger elevated immune responses in xenotransplantation. To mitigate the risk of hyperacute rejection, genetically modified pigs have been developed that lack certain glycans and express human complement inhibitors. Nevertheless, organs from these pigs may still provoke stronger inflammatory and innate immune reactions than allotransplants. Dysregulation of coagulation and persistent inflammation remain obstacles in the transplantation of pig organs into primates. Regulatory macrophages (Mregs), known for their anti-inflammatory properties, could offer a potential solution. Mregs secrete interleukin 10 and transforming growth factor beta, thereby suppressing immune responses and promoting the development of regulatory T cells. These Mregs are typically induced via the stimulation of monocytes or macrophages with macrophage colony-stimulating factor and interferon gamma, and they conspicuously express the stable marker dehydrogenase/reductase 9. Consequently, understanding the precise mechanisms governing Mreg generation, stability, and immunomodulation could pave the way for the therapeutic use of Mregs generated in vitro. This approach has the potential to reduce the required dosages and durations of anti-inflammatory and immunosuppressive medications in preclinical and clinical settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.