Abstract

The activity of glutamine synthetase (GS) fromStreptomyces aureofaciens was regulated by the availability of the nitrogen source. Rich nitrogen sources repressed GS synthesis and increased GS adenylylation. The enzyme was purified 270-fold to virtual homogeneity with 37% recovery. The molar mass of the native enzyme and its subunits was determined to be 620 and 55 kDa, respectively, indicating that GS is composed of 12 identical subunits. The enzyme has a hexagonal-bilayered structure as observed by electron microscopy. The isoelectric point of the purified GS was at pH 4.2. The enzyme was stable for 1 h at 50°C but lost activity rapidly when incubated at 65 and 70°C. Mg2+ supported relative synthetic activity of 100 and 72%, respectively, with the corresponding pH optima of 7.3 and 7.0. Mn2+ ions activated transferase activity at a pH optimum of 7.0. The temperature optimum for all GS activities was 50°C. Intermediates of the citric acid cycle exerted insignificant effects on the synthetic activities. There was no SH-group essential for the GS activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call