Abstract

Caldesmon is an actin-binding protein present in smooth muscle cells that also inhibits actin-activated myosin ATPase activity. To assess the possible role of caldesmon in the regulation of smooth contraction, we investigated the effects of synthetic peptides on force directly recorded from single hyperpermeable smooth muscle cells of ferret aorta and portal vein. GS17C, a peptide that contains the residues from Gly651 to Ser667 of the caldesmon sequence plus an added cysteine at the C terminus, binds calmodulin in a Ca(2+)-dependent manner and also binds to F-actin but does not inhibit actomyosin ATPase activity (Zhan, Q., Wong, S.S., and Wang, C.-L.A. (1991) J. Biol. Chem. 266, 21810-21814). In cells in which Ca2+ was clamped at pCa 7.0, GS17C induced a dose-dependent contraction (EC50 = 0.92 microM) in aorta cells, whereas it evoked little or no contraction in portal vein cells. The GS17C-induced contraction in aorta cells was inhibited at higher Ca2+ concentrations (above pCa 6.6) and by pretreatment with calmodulin. Another peptide, C16AA, which contains the residues from Ala594 to Ala609 and does not bind actin or calmodulin, did not induce contraction. Our results strongly suggest that GS17C induces contraction by the displacement of the inhibitory region of endogenous caldesmon and, furthermore, that caldesmon present in these smooth muscle cells regulates contraction by providing a basal resting inhibition of vascular tone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.