Abstract

The regulation of catecholamine and tetrahydrobiopterin synthesis was investigated in cultured rat pheochromocytoma PC12 cells following treatments with nerve growth factor (NGF), epidermal growth factor (EGF) and interferon-γ (IFN-γ). NGF and EGF, but not IFN-γ, caused an increase after 24 h in the levels of BH 4 and catecholamines, and the activities of tyrosine hydroxylase and GTP cyclohydrolase, the rate-limiting enzymes in catecholamine and BH 4 synthesis, respectively. Actinomycin D, a transcriptional inhibitor, blocked treatment-induced elevations in tyrosine hydroxylase and GTP cyclohydrolase activities. NGF, EGF or IFN-γ did not affect the activity of sepiapterin reductase, the final enzyme in BH 4 biosynthesis. Rp-cAMP, an inhibitor of cAMP-mediated responses, blocked the induction of tyrosine hydroxylase by NGF or EGF; inhibition of protein kinase C partially blocked the EGF effect, but not the NGF effect. NGF also induced GTP cyclohydrolase in a cAMP-dependent manner, while the EGF effect was not blocked by Rp-cAMP or protein kinase C inhibitors. Sphingosine induced GTP cyclohydrolase in a protein kinase C-independent manner without affecting tyrosine hydroxylase activity. Our results suggest that both tyrosine hydroxylase and GTP cyclohydrolase are induced in a coordinate and transcription-dependent manner by NGF and EGF, while conditions exist where the induction of tyrosine hydroxylase and GTP cyclohydrolase is not coordinately regulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.