Abstract

We have investigated the mechanisms of regulation of the Na+/glucose co-transporter (SGLT1) in a ruminant animal, which is an exceptional model system for studying intestinal glucose transport. Pre-ruminant lambs absorb glucose, produced by hydrolysis of the milk sugar lactose, in the intestine via apical SGLT1 and basolateral facilitative glucose transporters (GLUT2). Weaning coincides with the development of the rumen, and consequently the amount of hexoses reaching the small intestine of the ruminant sheep is undetectable. During development, SGLT1 activity and abundance in intestinal brush-border membranes decreased by over 200-fold, and either maintaining lambs on a milk replacer diet or infusing sheep intestine with D-glucose restored co-transporter activity and expression. We have measured ovine intestinal SGLT1 mRNA levels during development, with changes in diet and after direct infusion of D-glucose or methyl alpha-D-glucopyranoside into the intestinal lumen, in order to determine the level of regulation. During development, mRNA levels decreased only 4-fold. Lambs maintained on a milk replacer diet showed no change in mRNA levels relative to age-matched controls. Finally, upon infusion of the intestine of the ruminant sheep with sugars, D-glucose infusion increased SGLT1 mRNA, but only by 2-fold, compared with a 60-90-fold increase in co-transporter number and activity. Since the change in Na(+)-dependent glucose transport activity is correlated with SGLT1 protein abundance, and since changes in mRNA levels do not account for the dramatic changes in protein abundance, we conclude that the principal level of SGLT1 regulation by luminal sugar is translational or post-translational.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.