Abstract

The intestine adapts to environmental stimuli, such as modifications in dietary lipids. Dietary lipids modify brush border membrane (BBM) permeability and nutrient transporter activities. Gangliosides (GANG) are glycolipids present in human milk, but they are present only in low amounts in infant formula. Exogenous GANG are incorporated into cell membranes and increase their permeability. This study was undertaken to determine if feeding a 0.2% GANG-enriched diet for 2 weeks alters in vitro intestinal sugar absorption in weanling rats compared with an isocaloric control diet or diet enriched with polyunsaturated long-chain fatty acids. In vitro uptake of 34-96 mm glucose and fructose and morphological measurements were assessed on intestinal tissue of weanling rats. Western blotting, immunohistochemistry, Northern blotting, and reverse transcription-polymerase chain reaction were performed to determine the mRNA and protein abundance of the sugar transporters SGLT-1, GLUT2 and GLUT5. Feeding GANG did not alter the rates of animal weight gain or intestinal morphology. GANG did not affect fructose uptake. Depending on the concentration of glucose, GANG increased jejunal uptake of higher concentrations of glucose by approximately 20%-60%. There were no changes in GLUT5 or GLUT2 protein or mRNA abundance. Similarly, there were no changes in SGLT-1 mRNA and protein abundance, as determined by Northern and Western blotting. However, using immunohistochemistry, SGLT-1 was lower in GANG than in controls. The results of this study suggest that the enhanced uptake of glucose that results from feeding 0.2% GANG for 2 weeks to weanling rats may be regulated posttranslationally. Clearly any adjustment of the content of GANG in infant formula must be studied carefully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.