Abstract

A high basal expression of manganese superoxide dismutase (MnSOD) has been reported in aggressive breast cancer cells, according to an unknown mechanism, and contributes to their invasive abilities. Here, we report the involvement of Sp1 and nuclear factor-κB (NF-κB) transcription factors in this high basal expression of MnSOD in aggressive breast cancer cells. Suppression or inactivation of Sp1 showed that it plays an essential role in the high MnSOD expression in aggressive breast cancer cells through a unique binding site identified by chromatin immunoprecipitation (ChIP) assay and functional analysis of the MnSOD proximal promoter. Treatment of cells with a specific NF-κB inhibitor peptide decreased significantly high basal MnSOD expression. A ChIP assay showed binding of a constitutive p50/p65 NF-κB complex to the MnSOD intronic enhancer element, associated with hyperacetylation of the H3 histone. Finally, high basal expression of MnSOD resulted in the lack of expression of Damaged DNA binding 2 (DDB2) protein in aggressive breast cancer cells. DDB2 overexpression prevented the binding of Sp1 as well as of NF-κB to their respective elements on the MnSOD gene. These results contribute to a better understanding of MnSOD up-regulation, which may be clinically important in the prediction of breast tumor progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.