Abstract
The aryl hydrocarbon receptor (AhR) has been extensively characterized as an environmental sensor with major roles in xenobiotic-induced toxicity. Evidence is accumulating that these functions serve as adaptive mechanisms overlapping its physiological roles. We previously described a critical role of constitutive AhR activation for the correct progress of mammalian oocyte maturation but the signaling pathway through which AhR controls maturation remains unclear.The aim of this study was to investigate whether the AhR interacts with the epidermal growth factor receptor (EGFR) and p42/44 extracellular regulated kinases (ERK1/2), both key factors in the signaling network that finely regulates the oocyte maturation. As experimental model we used bovine cumulus-oocyte complexes (COCs) during in vitro maturation (IVM).Blocking ERK1/2 signaling in COCs during IVM with the specific EGFR inhibitor AG1478 or the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 downregulated the expression of the AhR-target gene Cyp1a1. Inhibition of AhR activity was associated with a reduction in the oocytes’ ability to progress in meiosis resumption. In contrast, exposure to the AhR antagonist resveratrol reduced both CYP1A1 expression and the oocytes’ maturation competence, without affecting ERK1/2 signaling.These findings strongly indicate the EGFR/ERKs signaling network as an upstream regulator of the AhR activation in COCs, offering a new understanding of the finely tuned physiological mechanism leading to oocyte maturation. This information may provide fresh opportunities for improving oocyte in vitro maturation, and therefore boosting the efficiency of assisted reproduction techniques in mammals.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have