Abstract

IntroductionSox9 and p300 cooperate to induce expression of cartilage-specific matrix proteins, including type II collagen, aggrecan and link protein. Tumour necrosis factor (TNF)-α, found in arthritic joints, activates nuclear factor-κB (NF-κB), whereas retinoic acid receptors (RARs) are activated by retinoid agonists, including all-trans retinoic acid (atRA). Like Sox9, the activity of NF-κB and RARs depends upon their association with p300. Separately, both TNF-α and atRA suppress cartilage matrix gene expression. We investigated how TNF-α and atRA alter the expression of cartilage matrix genes.MethodsPrimary cultures of rat chondrocytes were treated with TNF-α and/or atRA for 24 hours. Levels of transcripts encoding cartilage matrix proteins were determined by Northern blot analyses and quantitative real-time PCR. Nuclear protein levels, DNA binding and functional activity of transcription factors were assessed by immunoblotting, electrophoretic mobility shift assays and reporter assays, respectively.ResultsTogether, TNF-α and atRA diminished transcript levels of cartilage matrix proteins and Sox9 activity more than each factor alone. However, neither agent altered nuclear levels of Sox9, and TNF-α did not affect protein binding to the Col2a1 48-base-pair minimal enhancer sequence. The effect of TNF-α, but not that of atRA, on Sox9 activity was dependent on NF-κB activation. Furthermore, atRA reduced NF-κB activity and DNA binding. To address the role of p300, we over-expressed constitutively active mitogen-activated protein kinase kinase kinase (caMEKK)1 to increase p300 acetylase activity. caMEKK1 enhanced basal NF-κB activity and atRA-induced RAR activity. Over-expression of caMEKK1 also enhanced basal Sox9 activity and suppressed the inhibitory effects of TNF-α and atRA on Sox9 function. In addition, over-expression of p300 restored Sox9 activity suppressed by TNF-α and atRA to normal levels.ConclusionNF-κB and RARs converge to reduce Sox9 activity and cartilage matrix gene expression, probably by limiting the availability of p300. This process may be critical for the loss of cartilage matrix synthesis in inflammatory joint diseases. Therefore, agents that increase p300 levels or activity in chondrocytes may be useful therapeutically.

Highlights

  • Sox9 and p300 cooperate to induce expression of cartilage-specific matrix proteins, including type II collagen, aggrecan and link protein

  • The effect of tumour necrosis factor (TNF)-α, but not that of all-trans retinoic acid (atRA), on Sox9 activity was dependent on nuclear factor-κB (NF-κB) activation

  • Co-treatment of cells with TNF-α and atRA decreased levels of these transcripts more than each factor alone. These results suggest that signalling from TNF-α and atRA converge to influence the activity of transcription factors, such as Sox9, that are necessary for the expression of cartilage matrix genes

Read more

Summary

Introduction

Sox and p300 cooperate to induce expression of cartilage-specific matrix proteins, including type II collagen, aggrecan and link protein. Like Sox, the activity of NF-κB and RARs depends upon their association with p300 Both TNF-α and atRA suppress cartilage matrix gene expression. A subset of Sox proteins is responsible for controlling cartilage development and chondrocyte function by regulating the expression of specific matrix genes. Sox coordinates expression of two other atRA = all-trans retinoic acid; bp = base pair; caMEKK = constitutively active mitogen-activated protein kinase kinase kinase; EMSA = electrophoretic mobility shift assay; IκB = inhibitor of nuclear factor-κB; NF-κB = nuclear factor-κB; PCR = polymerase chain reaction; qPCR = quantitative real-time polymerase chain reaction; RAR = retinoic acid receptor; RARE = retinoic acid response element; Sox = Sry-type high mobility group box; TNF = tumour necrosis factor

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.