Abstract

Although the overwhelming majority of non-aquatic vascular plants form vesicular-arbuscular (VA) mycorrhizal associations, the extent of colonization of the host root by any given fungal symbiont varies considerably depending on host and environmental factors. Because VA mycorrhizal fungi are obligate biotrophs, transfer of photosynthate from host to fungus may be an important factor in regulating the extent of VA mycorrhizal formation. Host metabolites must cross the plasma membrane before becoming available to the fungus. Several studies on rates of root exudation under various environmental conditions show a strong correlation between rates of root exudation and percent of root length colonized by VA mycorrhizal fungi. However, passive leakage of simple metabolites from roots as the sole means of regulating fungal colonization seems improbable for an obligate biotroph which has not yet been successfully cultured on any artificial medium. So far there has been insufficient investigation of hormone interactions between symbionts, and of the interference by the fungus in host cell wall synthesis, to evaluate the possible role of these factors in controlling growth of VA mycorrhizal fungi. Cytochemical studies of the host-fungus interface suggest modification of host plasma membrane ATPase activity as arbuscules develop, but the function of this altered activity remains unresolved. The presence of a linked P1 -photosynthate exchange mechanism on the host plasma membrane analogous to the P1 -photosynthate translocator known to exist in the outer membrane of chloroplasts remains an uninvestigated possible mechanism for balancing photosynthate demand by the fungus with enhanced P uptake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call