Abstract
In this paper we propose an energy pumping-and-damping technique to regulate nonholonomic systems described by kinematic models. The controller design follows the widely popular interconnection and damping assignment passivity-based methodology, with the free matrices partially structured. Two asymptotic regulation objectives are considered: drive the state to zero or drive the systems total energy to a desired constant value. In both cases, the control laws are smooth, time-invariant, state-feedbacks. For the nonholonomic integrator we give an almost global solution for both problems, with the objectives ensured for all system initial conditions starting outside a set that has zero Lebesgue measure and is nowhere dense. For the general case of higher-order nonholonomic systems in chained form, a local stability result is given. Simulation results comparing the performance of the proposed controller with other existing designs are also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.