Abstract

In this paper we propose an energy pumping-and-damping technique to regulate nonholonomic systems described by kinematic models. The controller design follows the widely popular interconnection and damping assignment passivity-based methodology, with the free matrices partially structured. Two asymptotic regulation objectives are considered: drive the state to zero or drive the systems total energy to a desired constant value. In both cases, the control laws are smooth, time-invariant, state-feedbacks. For the nonholonomic integrator we give an almost global solution for both problems, with the objectives ensured for all system initial conditions starting outside a set that has zero Lebesgue measure and is nowhere dense. For the general case of higher-order nonholonomic systems in chained form, a local stability result is given. Simulation results comparing the performance of the proposed controller with other existing designs are also provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call