Abstract

In the present short review some factors affecting glucose utilization during exercise in skeletal muscle will be briefly described. Special focus will be put on the glucose transport step across the sarcolemma. Glucose transporters (GLUT4) are expressed at a surprisingly similar level in the different muscle fiber types in human skeletal muscle in contrast to findings in the rat. When working at the same absolute work load muscle glucose transport is decreased in trained compared with untrained muscle in part due to a decrease in GLUT4 translocation to the sarcolemma in trained muscle. However, when trained and untrained muscle are stressed severely by a workload taxing 100% of their peak oxygen uptake in a glycogen-depleted state, then glucose uptake is larger in trained than in untrained muscle and correlates with muscle GLUT4 content. Finally, the possible role of the AMP-activated protein kinase (AMPK) in regulating glucose uptake during exercise is discussed. It is indicated that at present no experiments definitively link activation of AMPK to activation of muscle glucose transport during exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.