Abstract

Parkinson's disease (PD), the second most common neurodegenerative disease after Alzheimer's disease, develops sporadically, and its cause is unknown. However, 5-10% of PD cases are inherited as monogenic diseases, which provides a chance to understand the molecular mechanisms underlying neurodegeneration. Over 20 causative genes have already been identified and are being characterized. These PD-associated genes are broadly classified into two groups: genes involved in mitochondrial functions and genes related to membrane dynamics such as intracellular vesicle transport and the lysosomal pathway. In this review, we summarize the latest findings on the mechanism by which members of the latter group of PD-associated genes regulate membrane dynamics, and we discuss how mutations of these genes lead to dopaminergic neurodegeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.