Abstract
Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 and Siglec-8 are closely related mast cell (MC) receptors with broad inhibitory activity, but whose functional differences are incompletely understood. Proteomic profiling using quantitative mass spectrometry was performed on primary mouse MCs to identify proteins associated with Siglec-6 and Siglec-8. For functional characterization, each receptor was evaluated biochemically and in exvivo and invivo inhibition models of IgE and non-IgE-mediated MC activation in Siglec-6- or Siglec-8-expressing transgenic mice. Siglec-6 and Siglec-8 were found in MCs within large complexes, interacting with 66 and 86 proteins, respectively. Strikingly, Siglec-6 and Siglec-8 interacted with a large cluster of proteins involved in IgE and non-IgE-mediated MC activation, including the high affinity IgE receptor, stem cell factor (SCF) receptor KIT/CD117, IL-4 and IL-33 receptors, and intracellular kinases LYN and JAK1. Protein interaction networks revealed Siglec-6 and Siglec-8 had overlapping yet distinct MC functions, with a potentially broader regulatory role for Siglec-6. Indeed, Siglec-6 preferentially interacted with the mature form of KIT at the cell surface, and treatment with an anti-Siglec-6 antibody significantly inhibited SCF-mediated MC activation more in comparison to targeting Siglec-8. These data demonstrate a central role for Siglec-6 and Siglec-8 in controlling MC activation through interactions with multiple activating receptors and key signaling molecules. Our findings suggest that Siglec-6 has a role distinct from that of Siglec-8 in regulating MC function and represents a distinct potential therapeutic target in mast cell-driven diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.