Abstract

The general research objective was to increase herd pregnancy rates by enhancing corpus luteum (CL) function and optimizing follicle development, in order to increase conception rate and embryo survival. The specific objectives were: to determine the effect of the duration of the preovulatory LH surge on CL function; to determine the function of LH during the postovulatory period on CL development; to optimize CL differentiation and follicle development by means of a biodegradable GnRH implant; to test whether optimization of CL development and follicle dynamics in timed- insemination protocols would improve fertility in high-yielding dairy cows. Low fertility in cattle results in losses of hundreds of millions of dollars in the USA and Israel. Two major causes of low fertility are formation of a functionally impaired CL, and subsequent enhanced ovarian follicle development. A functionally impaired CL may result from suboptimal LH secretion. The two major causes of low fertility in dairy cattle in US and Israel are negative energy status and summer heat stress; in both situations, low fertility is associated with reductions in LH secretion and impaired development of the ovulatory follicle and of the CL. In Florida, the use of 450-mg deslorelin (GnRH analogue) implants to induce ovulation, under the Ovsynch protocol resulted in a higher pregnancy rates than use of 750-mg implants, and pregnancy losses tended to decrease compared to controls, due probably to decrease in follicular development and estradiol secretion at the time of conceptus signaling to maintain the CL. An alternative strategy to enhance progesterone concentrations involved induction of an accessory CL by injection of hCG on day 5 after the cows were inseminated. Treatment with hCG resulted in 86% of the cows having two CLs, compared with 23% of the control cows. Conception rates were higher among the hCG-treated cows than among the controls. Another approach was to replace the second injection of GnRH analogue, in a timed-insemination protocol, with estradiol cypionate (ECP) injected 24 h after the injection of PGF₂ₐ Pregnancy rates were comparable with those obtained under the regular Ovsynch (timed- AI) program. Use of ECP induced estrus, and cows inseminated at detected estrus are indeed more fertile than those not in estrus at the time of insemination. Collectively, the BARD-supported programs at the University of Florida have improved timed insemination programs. In Ohio, the importance of the frequency of LH episodes during the early stages of the estrous cycle of cattle, when the corpus luteum is developing, was studied in an in vivo experiment in which cows were subjected to various episodic exposures to exogenous bovine LH. Results indicate that the frequent LH episodes immediately following the time of ovulation are important in development of the corpus luteum, from the points of view of both size and functionality. In another study, rates of cell proliferation and numbers of endothelial cells were examined in vitro in CLs collected from cows that received post-ovulation pulsatile LH treatment at various frequencies. The results indicate that the corpora lutea growth that results from luteal cell proliferation is enhanced by the episodes of LH release that occur immediately after the time of ovulation in cattle. The results also show that luteal endothelial cell numbers did not differ among cows treated with different LH doses. In Israel. a longer duration of the preovulatory LH surge stimulated the steroidogenic capacity of granulosa-derived luteal cells, and might, thereby, contribute to a higher progesterone output from the bovine corpus luteum. In an in vivo study, a subgroup of high-yielding dairy cows with extended estrus to ovulation interval was identified. Associated with this extended interval were: low plasma progesterone and estradiol concentrations and a low preovulatory LH surge prior to ovulation, as well as low post- ovulation progesterone concentration. In experiments based on the above results, we found that injection of GnRH at the onset of estrus increased the LHpeak, prevented late ovulation, decreased the variability between cows and elicited high and uniform progesterone levels after ovulation. GnRH at estrus onset increased conception rates, especially in the summer, and among primiparous cows and those with low body condition. Another study compared ovarian functions in multiparous lactating cows with those in nulliparous non-lactating heifers. The results revealed differences in ovarian follicular dynamics, and in plasma concentrations of steroids and gonadotropins that may account for the differences in fertility between heifers and cows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.