Abstract

Background/Aims: Janus kinase 3 (JAK3), a tyrosine kinase contributing to the regulation of cell proliferation and apoptosis of lymphocytes and tumour cells, has been shown to modify the expression and function of several ion channels and transport proteins. Channels involved in the regulation of cell proliferation include the large conductance voltage- and Ca<sup>2+</sup>-activated K<sup>+</sup> channel BK. The present study explored whether JAK3 modifies BK channel protein abundance and current. Methods: cRNA encoding Ca<sup>2+</sup>-insensitive BK channel (BK<sup>M513I+Δ899-903</sup>) was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type JAK3, constitutively active <sup>A568V</sup>JAK3, or inactive <sup>K851A</sup>JAK3. Voltage gated K<sup>+</sup> channel activity was measured utilizing dual electrode voltage clamp. Moreover, BK channel protein abundance was determined utilizing flow cytometry in CD19<sup>+</sup> B lymphocyte cell membranes from mice lacking functional JAK3 (jak3<sup>-/-</sup>) and corresponding wild-type mice (jak3<sup>+/+</sup>). Results: BK activity in BK<sup>M513I+Δ899-903</sup> expressing oocytes was slightly but significantly decreased by coexpression of wild-type JAK3 and of <sup>A568V</sup>JAK3, but not by coexpression of <sup>K851A</sup>JAK3. The BK channel protein abundance in the cell membrane was significantly higher in jak3<sup>-/-</sup> than in jak3<sup>+/+</sup> B lymphocytes. The decline of conductance in BK and JAK3 coexpressing oocytes following inhibition of channel protein insertion by brefeldin A (5 µM) was similar in oocytes expressing BK with JAK3 and oocytes expressing BK alone, indicating that JAK3 might slow channel protein insertion into rather than accelerating channel protein retrieval from the cell membrane. Conclusion: JAK3 is a weak negative regulator of membrane BK protein abundance and activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.