Abstract
Regulation of ion transport through the plasma membrane was studied on single cell suspensions of hepatocytes, obtained after perfusion of rat liver with collagenase/hyaluronidase solution. Steady-state intracellular K and Na contents were shown to be markedly dependent on external Ca concentration and temperature, the sum of both ion concentrations remaining nearly constant. In contrast, steady-state intracellular chloride content was found to be independent of external Ca concentration, but dependent on temperature. Using the constant field relations, the passive permeabilities PK and PCl for potassium and chloride, respectively, were derived from the experimental data. At temperatures at and above 37 degrees C, with increasing external Ca concentration, PK, exhibits a sharp decrease at about 10(-4)M. In contrast, PCl at 37 degrees C was found to be independent of Ca concentration within experimental error. Earth alkali ions other than Ca, show marked but different effects on PK if compared at equal concentrations. Preincubation of the cells with cholesterol leads to a broadening of the dependence of PK on external Ca concentration. The above results, as well as those on the dependence of PK on external Ca concentration obtained by other authors, could be quantitatively described by a theoretical model of the plasma membrane proposed earlier. This model postulates regulatory binding sites, which cooperatively undergo a cation exchange of divalent cations by K+ ions from the external medium if the cation composition of the latter is altered.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have