Abstract

Microglia are the immune effector cells that are activated in response to pathological changes in the central nervous system. Microglial activation is accompanied by the alteration of integrin expression on the microglia surface. However, changes of integrin expression upon chemoattractant (ADP) stimulation still remain unknown. In this study, we investigated whether ADP induces the alteration of integrin species on the cell surface, leading to changes in chemotactic ability on different extracellular matrix proteins. Flow cytometry scans and on-cell Western assays showed that ADP stimulation induced a significant increase of α6 integrin-GFP, but not α5, on the surface of microglia cells. Microglia also showed a greater motility increase on laminin than fibronectin after ADP stimulation. Time lapse microscopy and integrin endocytosis assay revealed the essential role of calcium-independent phospholipase A2 activity for the recycling of α6 integrin-GFP from the endosomal recycling complex to the plasma membrane. Lack of calcium-independent phospholipase A2 activity caused a reduced rate of focal adhesion formation on laminin at the leading edge. Our results suggest that the alteration of integrin-mediated adhesion may regulate the extent of microglial infiltration into the site of damage by controlling their chemotactic ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.