Abstract
Inhibin production by cultured granulosa cells from immature diethylstilbestrol (DES)-primed rats was studied in relation to estradiol and progesterone production. The inhibin content in culture media was assayed with a specific radioimmunoassay (RIA) using an antibody to porcine 32 kDa inhibin that recognizes rat inhibin as well. Inhibin production was about 10 ng/ml/2 X 10(4) cells/72 h at the basal levels and was maximally stimulated with 25 ng/ml of follicle stimulating hormone (FSH) to 45 ng/ml which was 4.5 times the basal levels, with an ED50 value of 2.0 ng/ml. A cyclic AMP analog (dibutyryl cyclic AMP) or reagents that promote cAMP production were also effective in inhibin production, indicating that FSH stimulates inhibin production through a cAMP-dependent pathway. Luteinizing hormone (LH) was not effective in producing inhibin from freshly prepared granulosa cells, whereas granulosa cells pre-incubated with FSH for 48 h because responsive to LH regarding inhibin production. Testosterone sensitized the granulosa cells to the FSH stimulation, whereas hydrocortisone (4 ng/ml) decreased the sensitivity of granulosa cells by increasing the ED50 value for inhibin production by FSH about 10 times. A similar effect was observed regarding estradiol production, while progesterone production due to stimulation by FSH was enhanced by the hydrocortisone treatment. Insulin and platelet extract both stimulated inhibin production and enhanced the maximal response of inhibin production due to stimulation by FSH without altering, or even increasing the ED50 values. Epidermal growth factor (EGF), (D-Leu6)Des-Gly10-LHRH N-ethylamide (GnRH agonist) and 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent protein kinase C activator, inhibited both inhibin production and estradiol or progesterone production. Consequently, the regulation of inhibin production was similar to that of estradiol production, but markedly different from that of progesterone. However, inhibin and estradiol production were modulated differently by various growth factors and hormones. These phenomena might account for possible discrete changes in the plasma levels of inhibin and estradiol in vivo.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have