Abstract

Ionic liquid bonded polysiloxanes (PILs) are a class of polysiloxanes whose side chains contain ionic liquid (IL) moieties. They not only inherit the character of “dual nature” from ILs but also inherit the excellent film-forming ability and thermal stability from polysiloxanes. In this paper, the solvation parameter model is introduced to investigate the interaction characteristics of PILs. The experimental results show that the b values of PILs occur in a wider range than those previously reported for the stationary phases. The hydrogen bond acidity can be effectively adjusted by varying the ionic liquid content or substituents. Hindering the formation of the hydrogen-bonded networks and increasing the exposed hydrogens may be intrinsic to the strong hydrogen bond acidity of PILs. Subsequently, the separation performances of these PIL stationary phases were demonstrated by separating various mixed samples of aromatic isomers, dichloroanilines, substituted alkanes, alcohols, esters, etc. The results show that the PILs with strong hydrogen bond acidity have excellent selectivity performances for aromatic position isomers, alcohols, and substituted alkanes. This study is significant for understanding the hydrogen bond acidity and broadening the range of hydrogen bond acidity of ionic liquid stationary phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call