Abstract

Beaks are increasingly recognised as important contributors to avian thermoregulation. Several studies supporting Allen’s rule demonstrate how beak size is under strong selection related to latitude and/or air temperature (Ta). Moreover, active regulation of heat transfer from the beak has recently been demonstrated in a toucan (Ramphastos toco, Ramphastidae), with the large beak acting as an important contributor to heat dissipation. We hypothesised that hornbills (Bucerotidae) likewise use their large beaks for non-evaporative heat dissipation, and used thermal imaging to quantify heat exchange over a range of air temperatures in eighteen desert-living Southern Yellow-billed Hornbills (Tockus leucomelas). We found that hornbills dissipate heat via the beak at air temperatures between 30.7°C and 41.4°C. The difference between beak surface and environmental temperatures abruptly increased when air temperature was within ~10°C below body temperature, indicating active regulation of heat loss. Maximum observed heat loss via the beak was 19.9% of total non-evaporative heat loss across the body surface. Heat loss per unit surface area via the beak more than doubled at Ta > 30.7°C compared to Ta < 30.7°C and at its peak dissipated 25.1 W m-2. Maximum heat flux rate across the beak of toucans under comparable convective conditions was calculated to be as high as 61.4 W m-2. The threshold air temperature at which toucans vasodilated their beak was lower than that of the hornbills, and thus had a larger potential for heat loss at lower air temperatures. Respiratory cooling (panting) thresholds were also lower in toucans compared to hornbills. Both beak vasodilation and panting threshold temperatures are potentially explained by differences in acclimation to environmental conditions and in the efficiency of evaporative cooling under differing environmental conditions. We speculate that non-evaporative heat dissipation may be a particularly important mechanism for animals inhabiting humid regions, such as toucans, and less critical for animals residing in more arid conditions, such as Southern Yellow-billed Hornbills. Alternatively, differences in beak morphology and hardness enforced by different diets may affect the capacity of birds to use the beak for non-evaporative heat loss.

Highlights

  • There is increasing evidence for the importance of beaks in avian thermoregulation [1], with the beak identified as a significant avenue of non-evaporative heat dissipation in a number of species [2,3,4,5]

  • As the hornbills were subjected to the ramped profile of increasing air temperature (Ta), the surface temperature of the beak clearly changed in response to Ta, indicated by a rapid change in the colour of the beak in 14 of the 18 study individuals, as visualised by the thermal imaging camera

  • We suggest that further work on the physiology of heat dissipation through thermal windows, such as large beaks, should include species acclimated to different air temperatures as well as different humidity levels

Read more

Summary

Introduction

There is increasing evidence for the importance of beaks in avian thermoregulation [1], with the beak identified as a significant avenue of non-evaporative heat dissipation in a number of species [2,3,4,5]. Adult Toco Toucans, Ramphastos toco, are able to vasodilate their extremely large beaks depending on thermal conditions, allowing heat to be dissipated from the beak. In this species, non-evaporative heat loss via the beak averages 60% of total non-evaporative heat loss at air temperatures (Ta) above 28°C [4]. At air temperatures equivalent to 20–25°C below normothermic body temperature (Tb), vasodilation of the networks below the rhamphotheca (the sheath of keratin that forms the outer surface of the beak), cause an increase in beak surface temperature [8] Under these conditions, the beak acts as a heat radiator, reducing the need for evaporative heat dissipation. On the other hand, reduced reliance on evaporative heat dissipation probably has an adaptive significance for water conservation in arid environments [2]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.