Abstract

The effect of exogenous plastoquinone (PQ) on the different deexcitation pathways of photosystem I (PSI) was investigated. Addition of oxidized decyl-plastoquinone (dPQ) and PQ-2 strongly quenched the chlorophyll (Chl) emission spectra of PSI submembrane fractions over all wavelengths. This quenching increased with the concentration of exogenous PQ added and followed the modified Stern-Volmer law. The Stern-Volmer constants found for dPQ and PQ-2 were 1.25 x 10(6) M-1 and 0.55 x 10(6) M-1, respectively, and the fraction of fluorescence accessible to the quencher was 0.7 for both exogenous PQ. dPQ and PQ-2 also retarded the P700 photooxidation measured under limiting actinic light irradiances. Photoacoustic measurements showed that addition of dPQ increased the heat dissipation and decreased the photochemical capacity of PSI. From these results, exogenous oxidized PQ were shown to efficiently quench the Chl excited state in the PSI antenna and change the balance between Chl deexcitation pathways. Moreover, reduction of the endogenous PQ pool in whole thylakoid membranes by NADPH increased PSI fluorescence by 65%, indicating the importance of the redox state of the PQ pool on PSI energy dissipation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.