Abstract
The well-known linear relationship between oxygen consumption and force-length area or the force-time integral is analyzed here for isometric contractions. The analysis, which is based on a biochemical model that couples calcium kinetics with cross-bridge cycling, indicates that the change in the number of force-generating cross bridges with the change in the sarcomere length depends on the force generated by the cross bridges. This positive-feedback phenomenon is consistent with our reported cooperativity mechanism, whereby the affinity of the troponin for calcium and, hence, cross-bridge recruitment depends on the number of force-generating cross bridges. Moreover, it is demonstrated that a model that does not include a feedback mechanism cannot describe the dependence of energy consumption on the loading conditions. The cooperativity mechanism, which has been shown to determine the force-length relationship and the related Frank-Starling law, is shown here to provide the basis for the regulation of energy consumption in the cardiac muscle.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have