Abstract

The onset and the termination of innate immune response must be tightly regulated to maintain homeostasis and prevent excessive inflammation, which can be detrimental to the organism, particularly in the context of sepsis. Endotoxin tolerance and compensatory anti-inflammatory response syndrome (CARS) describe a state of hypo-responsiveness characterized by reduced capacity of myeloid cells to respond to inflammatory stimuli, particularly those initiated by bacterial lipopolysaccharide (LPS). To achieve endotoxin tolerance, extensive reprogramming otherwise termed as “innate immune training”, is required that leads to both modifications of the intracellular components of TLR signaling and also to alterations in extracellular soluble mediators. Non-coding RNAs (ncRNAs) have been recognized as critical regulators of TLR signaling. Specifically, several microRNAs (miR-146, miR-125b, miR-98, miR-579, miR-132, let-7e and others) are induced upon TLR activation and reciprocally promote endotoxin tolerance and/or cross tolerance. Many other miRNAs have been also shown to negatively regulate TLR signaling. The long non-coding (lnc)RNAs (Mirt2, THRIL, MALAT1, lincRNA-21 and others) are also altered upon TLR activation and negatively regulate TLR signaling. Furthermore, the promotion or termination of myeloid cell tolerance is not only regulated by intracellular mediators but is also affected by other TLR-independent soluble signals that often achieve their effect via modulation of intracellular ncRNAs. In this article, we review recent evidence on the role of different ncRNAs in the context of innate immune cell tolerance and trained immunity, and evaluate their impact on immune system homeostasis.

Highlights

  • The onset and termination of the host immune responses have to be tightly controlled; the initial burst of pro-inflammatory cytokines should be timely blunted to avoid overwhelming inflammatory responses causing tissue damage and secure homeostasis

  • We review recent evidence on the role of ncRNAs, regulated by toll-like receptor (TLR) ligands or other TLR independent soluble signals, in the regulation of endotoxin tolerance and discuss their impact in the context of sepsis

  • Treg derived exosomes deliver miR-150-5p and miR-142-3p to dendritic cells leading to the induction of LPS-induced IL-10 and suppression of LPS-induced IL-6, promoting tolerance [119]. It appears that a variety of TLR ligands, cytokines, and soluble mediators control endotoxin tolerance and crosstolerance via the regulation of ncRNAs

Read more

Summary

Introduction

The onset and termination of the host immune responses have to be tightly controlled; the initial burst of pro-inflammatory cytokines should be timely blunted to avoid overwhelming inflammatory responses causing tissue damage and secure homeostasis. MiR-155 inhibits the expression of the negative regulators SHIP1 and SOCS1 enhancing TLR signals, promotes TNFα translation and establishes a proinflammatory phenotype in macrophages [42,43,44,45,46]. MiR-221 and miR-222 were induced after prolonged LPS stimulation in mice and both promoted transcriptional silencing of a subset of pro-inflammatory genes via regulation of chromatin remodeling mediated by SWI/SNF (switch/sucrose non-fermentable) and STAT transcription factors [3].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.